If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=180x
We move all terms to the left:
40x^2-(180x)=0
a = 40; b = -180; c = 0;
Δ = b2-4ac
Δ = -1802-4·40·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-180}{2*40}=\frac{0}{80} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+180}{2*40}=\frac{360}{80} =4+1/2 $
| h/16=4 | | 31-z=98 | | (3x-5)^2-(2x-3)^2=0 | | 9s+7=-8s | | 7u=9u-6 | | 4=3.5-x | | 6w=3+9w | | 3x+5=11-3x | | x+x(18/100)=100 | | x+(18/100)=100 | | 45/60=x/100 | | x(118/100)=100 | | 9(2x-10)=3(x+5) | | b-1/4b=6 | | 11a+8=5a+20 | | 2x×2x-9x=0 | | 6(2f+7)=3—f | | 6(x-3)+(2x+9)=0 | | 3r=7r–3 | | -11y=32=104-5 | | 10-4n=12 | | 4x+2x-7x=12 | | 5x+2x-7x=12 | | 5x1+2x2-7x3=12 | | 3x-6x+5x=7 | | 8^1/6x2^x=32^1/2 | | 5x+3x-2x=30 | | (X^3)(3x²)+2x-1=0 | | x3+10x2+40x+200=0 | | 3i-18/6=2=i | | 4(y-6)=27 | | 12=15r |